On the number of fully weighted zero-sum subsequences.

Abílio Lemos Cardoso Júnior (abiliolemos@ufv.br)
Universidade Federal de Viçosa
Abstract. Let G be a finite additive abelian group with exponent n and $S=g_{1} \cdots g_{t}$ be a sequence of elements in G. For any element g of G and $A \subseteq\{1,2, \ldots, n-1\}$, let $N_{A, g}(S)$ denote the number of subsequences $T=\prod_{i \in I} g_{i}$ of S such that $\sum_{i \in I} a_{i} g_{i}=g$, where $I \subseteq\{1, \ldots, t\}$ and $a_{i} \in A$. We prove that $N_{A, 0}(S) \geq 2^{|S|-D_{A}(G)+1}$, when $A=\{1, \ldots, n-1\}$, where $D_{A}(G)$ is the smallest positive integer l, such that every sequence S over G of length at least l has nonempty subsequence $T=\prod_{i \in I} g_{i}$ such that $\sum_{i \in I} a_{i} g_{i}=0, I \subseteq\{1, \ldots, t\}$ and $a_{i} \in A$. Moreover, we classify the sequences such that $N_{A, 0}(S)=2^{|S|-D_{A}(G)+1}$, where the exponent of G is an odd number.

